How I Think About Math
Part I: Linear Algebra

David Dalrymple
davidad@alum.mit.edu

March 6, 2014
Chapter 1: Relations

1. Relations
 - Labels
 - Composing
 - Joining
 - Inverting
 - Commuting

2. Linearity
 - Fields
 - “Linear” defined
 - Vectors
 - Matrices
 - Tensors

3. Subspaces
 - Image & Coimage
 - Kernel & Cokernel

4. Decomposition
 - Singular Value Decomposition
 - Fundamental Theorem of Linear Algebra
 - CP decomposition
Relations are a generalization of functions; they’re actually more like constraints. Here’s an example:

\[x \rightarrow 2 \cdot \rightarrow y \]
Relations are a generalization of functions; they’re actually more like constraints. Here’s an example:

\[x \rightarrow 2 \cdot y \]

This might be more familiar to you as the equation:

\[y(x) = 2 \cdot x \]
Relations are a generalization of functions; they’re actually more like constraints. Here’s an example:

\[
3 \rightarrow 2 \cdot 6
\]

This might be more familiar to you as the equation:

\[
6 = 2 \cdot 3
\]
Relations are a generalization of functions; they’re actually more like constraints. Here’s an example:

\[
2.5 \rightarrow 2 \cdot 5
\]

This might be more familiar to you as the equation:

\[
5 = 2 \cdot 2.5
\]
Relations are a generalization of functions; they’re actually more like constraints. Here’s an example:

\[0 \rightarrow 2 \cdot 0 \]

This might be more familiar to you as the equation:

\[0 = 2 \cdot 0 \]
A simple relation

Relations are a generalization of functions; they’re actually more like constraints. Here’s an example:

\[x \rightarrow 2 \cdot \rightarrow y \]

This might be more familiar to you as the equation:

\[y(x) = 2 \cdot x \]
Relations are a generalization of functions; they’re actually more like constraints. Here’s an example:

\[
\begin{align*}
x & \rightarrow 2 \cdot y
\end{align*}
\]

Really, the directional annotations on the arrows are just that: annotations.

This might be more familiar to you as the equation:

\[y(x) = 2 \cdot x\]
A simple relation

Relations are a generalization of functions; they’re actually more like constraints. Here’s an example:

\[x \rightarrow 2 \cdot y \]

Really, the directional annotations on the arrows are just that: annotations. Only the directionality of the operator “2\cdot” is significant.

This might be more familiar to you as the equation:

\[y(x) = 2 \cdot x \]
Relations are a generalization of functions; they’re actually more like constraints. Here’s an example:

Really, the directional annotations on the arrows are just that: annotations. Only the directionality of the operator “$2 \cdot$” is significant.

This might be more familiar to you as the equation:

$$y(x) = 2 \cdot x$$

Analogously, writing $y(x)$ is just politics: “x gets to tell y what to do!”
Relations are a generalization of functions; they’re actually more like constraints. Here’s an example:

![Diagram](image)

Really, the directional annotations on the arrows are just that: annotations. Only the directionality of the operator “2·” is significant.

This might be more familiar to you as the equation:

\[y(x) = 2 \cdot x \]

Analogously, writing \(y(x) \) is just politics: “\(x \) gets to tell \(y \) what to do!”

It can be useful to sequence computations hierarchically, but in the Platonic ideal world of mathematics,
A simple relation

Relations are a generalization of functions; they’re actually more like constraints. Here’s an example:

\[x \rightarrow 2 \cdot y \]

Really, the directional annotations on the arrows are just that: annotations. Only the directionality of the operator “2 ·” is significant.

This might be more familiar to you as the equation:

\[y = 2 \cdot x \]

Analogously, writing \(y(x) \) is just politics: “\(x \) gets to tell \(y \) what to do!”

It can be useful to sequence \textit{computations} hierarchically, but in the Platonic ideal world of mathematics, all variables are equal.
Relations are a generalization of functions; they’re actually more like constraints. Here’s an example:

\[x \rightarrow 2 \cdot y \]

Really, the directional annotations on the arrows are just that: annotations. Only the directionality of the operator “2.” is significant.

This might be more familiar to you as the equation:

\[y = 2 \cdot x \]

Analogously, writing \(y(x) \) is just politics: “\(x \) gets to tell \(y \) what to do!” It can be useful to sequence *computations* hierarchically, but in the Platonic ideal world of mathematics, all variables are equal have equal standing.
A simpler relation

\[x \quad \longrightarrow \quad y \]
A simpler relation

You might better know this relation as

\[y = x \]
You might better know this relation as

3 = 3
A simpler relation

You might better know this relation as

\[2 = 2 \]
You might better know this relation as

\[0 = 0 \]
A simpler relation

\[x \quad \overset{\text{Y}}{\leftrightarrow} \quad y \]

You might better know this relation as

\[y = x \]
• Like the arguments of a subroutine, the labels of a relation are just a convenient “interface” for connecting it to a context or environment.
Like the arguments of a subroutine, the labels of a relation are just a convenient “interface” for connecting it to a context or environment.

If a label isn’t serving that purpose, we can remove it.
Composing two relations
This is way easier than composing functions.
Composing two relations

This is way easier than composing functions.
We just stick them together.
Composing two relations

This is way easier than composing functions.
We just stick them together.
Sticking relations together like this will always give you a relation.
What does this mean?

\[x \rightarrow y \]

\[\downarrow \]

\[z \]
What does this mean?

You could think of it as:
What does *this* mean?

\[x \quad \downarrow \quad y \]

\[z \]

You could think of it as:

\[x = y \]

\[x = z \]
What does *this* mean?

You could think of it as:

\[x = y \quad \text{or} \quad x = z \]

\[y = x \quad \text{or} \quad y = z \]
What does this mean?

\[x \rightarrow y \]

You could think of it as:

\[x = y \quad \text{or} \quad y = x \quad \text{or} \quad x = z \]

\[x = z \quad \text{or} \quad y = z \quad \text{or} \quad z = y \]
What does *this* mean?

You could think of it as:

\[
\begin{align*}
x &= y \\
x &= z \\
y &= x \\
y &= z \\
x &= z \\
y &= z
\end{align*}
\]

They’re all the same! But with complex joins, this is easier to see in pictures.
Joined Relations

What does *this* mean?

You could think of it as:

\[
\begin{align*}
 x &= y \\
 y &= x \\
 x &= z \quad \text{or} \quad y &= z \\
 z &= y
\end{align*}
\]

They’re all the same! But with complex joins, this is easier to see in pictures. Relations with more than two “sides” (like this) are sometimes called

systems of equations.

But I find a single 3-sided relation more intuitive than a “system” of two equations.
An example inverse

Let’s write “multiplication by 0.5 is the inverse of multiplication by 2.”

\[
\begin{array}{c}
\text{let} \quad 2 \cdot y = x \\
\text{let} \quad 0.5 \cdot x = y \\
\end{array}
\]
Let’s write “multiplication by 0.5 is the inverse of multiplication by 2.”

\[
x \quad 2 \cdot \quad y
\]

\[
y \quad 0.5 \cdot \quad x
\]

Note: This is like the system of equations

\[
y = 2 \cdot x
\]

\[
x = 0.5 \cdot y
\]
Let’s write “multiplication by 0.5 is the inverse of multiplication by 2.”
Let’s write “multiplication by 0.5 is the inverse of multiplication by 2.”

- We can turn the bottom diagram around,
Let’s write “multiplication by 0.5 is the inverse of multiplication by 2.”

• We can turn the bottom diagram around, like so.
Let’s write “multiplication by 0.5 is the inverse of multiplication by 2.”

- We can turn the bottom diagram around, like so.
- Of course, $x = x$ and $y = y$,
Let’s write “multiplication by 0.5 is the inverse of multiplication by 2.”

\[
\begin{align*}
\text{Let's write “multiplication by 0.5 is the inverse of multiplication by 2.”} \\
\text{We can turn the bottom diagram around, like so.} \\
\text{Of course, } x = x \text{ and } y = y, \text{ so we can join those relations in.}
\end{align*}
\]
An example inverse

Let’s write “multiplication by 0.5 is the inverse of multiplication by 2.”

- We can turn the bottom diagram around, like so.
- Of course, $x = x$ and $y = y$, so we can join those relations in.
- But we can remove redundant labels,
Let’s write “multiplication by 0.5 is the inverse of multiplication by 2.”

- We can turn the bottom diagram around, like so.
- Of course, $x = x$ and $y = y$, so we can join those relations in.
- But we can remove redundant labels, like so.
An example inverse

Let’s write “multiplication by 0.5 is the inverse of multiplication by 2.”

- We can turn the bottom diagram around, like so.
- Of course, \(x = x \) and \(y = y \), so we can join those relations in.
- But we can remove redundant labels, like so. Since we’re just going to transform \(y \) back into \(x \) anyway,
Let’s write “multiplication by 0.5 is the inverse of multiplication by 2.”

- We can turn the bottom diagram around, like so.
- Of course, \(x = x \) and \(y = y \), so we can join those relations in.
- But we can remove redundant labels, like so. Since we’re just going to transform \(y \) back into \(x \) anyway, we don’t even need a name for it.
Let’s write “multiplication by 0.5 is the inverse of multiplication by 2.”

- We can turn the bottom diagram around, like so.
- Of course, $x = x$ and $y = y$, so we can join those relations in.
- But we can remove redundant labels, like so. Since we’re just going to transform y back into x anyway, we don’t even need a name for it.
- The meaning is still imprecise.
Let’s write “multiplication by 0.5 is the inverse of multiplication by 2.”

- We can turn the bottom diagram around, like so.
- Of course, $x = x$ and $y = y$, so we can join those relations in.
- But we can remove redundant labels, like so. Since we’re just going to transform y back into x anyway, we don’t even need a name for it.
- The meaning is still imprecise. Even this is valid if x happens to be 0.
Let’s write “multiplication by 0.5 is the inverse of multiplication by 2.”

- We can turn the bottom diagram around, like so.
- Of course, $x = x$ and $y = y$, so we can join those relations in.
- But we can remove redundant labels, like so. Since we’re just going to transform y back into x anyway, we don’t even need a name for it.
- The meaning is still imprecise. This diagram isn’t just true for some x...
Let’s write “multiplication by 0.5 is the inverse of multiplication by 2.”

- We can turn the bottom diagram around, like so.
- Of course, \(x = x \) and \(y = y \), so we can join those relations in.
- But we can remove redundant labels, like so. Since we’re just going to transform \(y \) back into \(x \) anyway, we don’t even need a name for it.
- The meaning is still imprecise. This diagram isn’t just true for some \(x \)… it’s true for any \(x \) that is a “real” number,
Let’s write “multiplication by 0.5 is the inverse of multiplication by 2.”

- We can turn the bottom diagram around, like so.
- Of course, $x = x$ and $y = y$, so we can join those relations in.
- But we can remove redundant labels, like so. Since we’re just going to transform y back into x anyway, we don’t even need a name for it.
- The meaning is still imprecise. This diagram isn’t just true for some x... it’s true for any x that is a “real” number, which we show like this.
Let’s write “multiplication by 0.5 is the inverse of multiplication by 2.”

- We can turn the bottom diagram around, like so.
- Of course, $x = x$ and $y = y$, so we can join those relations in.
- But we can remove redundant labels, like so. Since we’re just going to transform y back into x anyway, we don’t even need a name for it.
- The meaning is still imprecise. This diagram isn’t just true for some x... it’s true for any x that is a “real” number, which we show like this.
Let’s write “A^{-1} is the inverse of A over \mathbb{R}.”

- We can turn the bottom diagram around, like so.
- Of course, $x = x$ and $y = y$, so we can join those relations in.
- But we can remove redundant labels, like so. Since we’re just going to transform y back into x anyway, we don’t even need a name for it.
- The meaning is still imprecise. This diagram isn’t just true for some x... it’s true for any x that is a “real” number, which we show like this.
If we can reverse the order of two operators and get equal results, we say that they **commute**.
If we can reverse the order of two operators and get equal results, we say that they **commute**.
If we can reverse the order of two operators A and B and get equal results, we say that A and B commute.
If we can reverse the order of two operators A and B and get equal results, we say that A and B commute.
If we can reverse the order of two operators A and B and get equal results, we say that A and B commute. We can express “A and B commute” like this:
What is “Linear”?
Algebra
davidad

Relations
Labels
Composing
Joining
Inverting
Commuting

Linearity
Fields
“Linear” defined
Vectors
Matrices
Tensors

Subspaces
Image & Coimage
Kernel & Cokernel

Decomposition
Singular Value Decomposition
Fundamental Theorem of Linear Algebra
CP decomposition
Algebra

david

Relations
Labels
Composing
Joining
Inverting
Commuting

Linearity
Fields
“Linear” defined
Vectors
Matrices
Tensors

Subspaces
Image & Coimage
Kernel & Cokernel

Decomposition
Singular Value Decomposition
Fundamental Theorem of Linear Algebra
CP decomposition
Algebra

davidad

Relations
Labels
Composing
Joining
Inverting
Commuting

Linearity
Fields
“Linear” defined
Vectors
Matrices
Tensors

Subspaces
Image & Coimage
Kernel & Cokernel

Decomposition
Singular Value Decomposition
Fundamental Theorem of Linear Algebra
CP decomposition